반응형

분류 전체보기 218

[유체역학] 버킹엄 파이 정리, 반복변수법

#유체역학 ​ Introduction 현실과 유사한 환경에서 실험을 수행하는 것은 시간과 물질적으로 어려움이 있고 무엇보다 비용적인 한계가 가장 크다. 공학은 "가장 경제적인 해결책"을 제시하는 학문이기 때문에 정확성을 최대한으로 유지하며 실험의 스케일을 축소하기 위해, 또한 구성요소들간의 상호작용 등을 최소화하는 간단한 모델이 등장했다. ​ ​ 공학에서 단위계는 힘-길이-시간 FLT system 과 질량-길이-시간 MLT system 두 가지가 있는데 이것은 모두 "차원"을 의미한다. ​ 예를 들어 밀도의 차원은 MLT system에서 다음과 같다. ​ ​ FLT system에서는 다음과 같다. ​ ​ 변수들은 각각의 고유한 차원을 가지고 있다. 각도(라디안), 레이놀즈 수 등 무차원 변수도 있다. ​..

[재료역학] 부정정보 예제

#재료역학 ​ Introduction 부정정보(Statically Indeterminate Beams)는 정역학적으로 부정정(Indeterminate) 상태인 보를 의미합니다. ​ 부정정이란 평형방정식 ΣF = 0 만으로 반력을 확정할 수 없는 구조이며 부정정 문제를 풀기 위해서는 변위에 대한 관계식, 적합방정식 등 추가 관계식이 요구됩니다. 부정정보 문제의 예시는 다음과 같습니다. ​ 2차원 평형방정식에서 얻을 수 있는 식은 ΣFx = 0, ΣFy = 0, ΣM = 0 총 세 개인데 그림 (a)에 나타난 반력요소는 그보다 많은 4개이기 때문에 추가적인 관계식이 필요합니다. ​ ​ ​ 아래 그림의 경우 총 여섯 개의 반력이 발생합니다. ​ ​ ​ Analysis by Deflection Curve 이러한..

[재료역학] 용기 내 압력에 의한 응력

#재료역학 ​ ​ 가스가 든 탱크 등 용기 내의 압력이 외부보다 클 경우 용기에 발생하는 응력은 구형 용기와 원통형 용기로 케이스를 나누어 볼 수 있습니다. ​ ​ 1. Spherical Pressure Vessels 구형 압력용기를 아래 그림과 같이 반으로 잘라보면 중심을 포함하는 단면에서 압력에 의한 힘 P와 응력에 의한 힘 F가 작용합니다. ​ 압력에 의한 힘은 압력 X 단면적 이고 응력에 의한 힘은 두께t를 가지는 껍질의 중심까지의 반지름 rm을 사용해 산정하였습니다. ​ 이 두 힘이 평형을 이뤄야 한다는 것에서 용기에 작용하는 응력을 유도할 수 있습니다. ​ ​ ​ ​ ​ ​ ​ 2. Cylindrical Pressure Vessels 원통형 용기의 경우 원주방향(Circumference) 응력..

[재료과학] 보의 처짐 예제

#재료과학 ​ ​ 목차 1. 처짐 미분방정식 2. 예제 풀이 ​ ​ ​ ​ ​ 보의 처짐 문제는 기본적으로 미분방정식으로부터 파생되는 적분상수들을 처리해줌으로 해결할 수 있습니다. 그 과정에서 제약조건들로부터 적분상수의 개수만큼 관계식을 이끌어 내는 것이 관건입니다. ​ ​ 1. 처짐 미분방정식 ​ ​ 최종적으로 얻고자 하는 건 처짐을 나타내는 처짐곡선 v입니다. 처짐 문제를 푸는 방법은 다음과 같습니다. ​ 1. SFD -> BMD 구하기(x에 대한 식으로 나타내기) 2. 적분해서 처짐곡선 구하기 3. 적절한 관계식 찾아서 적분상수 처리하기 ​ ​ ​ 하나의 문제에 대해 위 세 가지 미분방정식을 사용해 처짐곡선을 구해보고 그 다음 다양한 예제를 2계 미분방정식으로 해결해보겠습니다. ​ ​ 2. 예제 ​..

[머신러닝] 딥러닝의 개념 / 딥러닝 과정 / 신경망 구조 / 순전파, 역전파

목차 1. 딥러닝의 개념 2. 신경망 구조 3. 인공신경망을 이용한 인공지능 모델 학습 과정 4. 순전파(propagation), 역전파(back propagation) ​ ​ 1. 딥러닝의 개념 ​ 딥러닝이란 인공 신경망을 사용한 학습방법이며 대부분 준비된 데이터셋을 사용해 학습하는 "지도학습"법을 사용한다. ​ 인공 신경망은 아래 그림과 같은 input -> output 구조로 이루어져 있다. ​ 인공 신경망의 장점으로는 활용도가 굉장히 다양하다는 점, 비교적 손쉽게 구성할 수 있다는 점이 있다. 이미지를 보여줬을 때 강아지와 고양이를 구분해주는 모델을 만들거나 기사제목만으로 부정/긍정 의견을 예측하거나 앞으로의 주가 추이를 예측할 수도 있다. 얼굴인식 모델(특정 사람인지도 확인 가능)도 만들 수 있..

개발/머신러닝 2023.02.07

[수치해석학] LU분해(LU Factorization), 파이썬 코드

https://search.shopping.naver.com/book/catalog/32487155058 Linear Algebra and Its Applications, Global Edition : 네이버 도서 네이버 도서 상세정보를 제공합니다. search.shopping.naver.com ​§ 목차 § 0. LU분해 소개 1. LU분해 2. LU분해 알고리즘 3. 파이썬 구현 4. LU분해로 행렬방정식의 해 구하기 5. LU분해로 행렬식 계산하기 ​ ​ ​ ​ 0. Introduction LU분해는 행렬 분해의 한 종류입니다. L은 Lower triangular matrix(하삼각행렬), U는 Upper triangular matrix(상삼각행렬)을 의미합니다. 또다른 행렬 분해로는 직교행렬과 상..

[공업수학] 2.7-1 2계 비제차 미분방정식 : 미정계수법(Method of Undetermined Coefficients)

#공업수학 [공업수학] 2.2-1 상수계수를 가지는 제차 선형 상미분 방정식 (Homogeneous Linear ODEs with Constant Coeffici 공업수학(상)(Kreyszig)(Kreyszig)(10판) 『Kreyszig 공업수학, 10판』 상권. 이 책은 반세기 동안 전 세계적으로 가장 널리, 그리고 가장 많이 채택되어 사용되고 있는 Erwin Kreyszig 교수가 저술한 Advanced Engi subprofessor.tistory.com 이제 챕터 2도 거의 마무리되어 가네요. 오늘은 2계 미분방정식 로드맵 끝에서 두 번째에 위치한 미정계수법에 대해서 알아봅시다. Nonhomogeneous 즉 비제차 방정식의 해를 구하는 미정계수법은 기본적으로 제차방정식의 해를 구할 수 있어야 ..

[공업수학] 2.6 론스키 행렬식(Wronskian)

#공업수학 Wronskian(론스키안?)은 함수와 함수간의 선형독립성(Linear Independence)을 판단하는 도구입니다. 혹 왜 선형독립성을 따져야 하냐는 질문을 한다면.. 너무 절망스러울 것 같습니다.. 여기까지 왔는데 그런 질문을 하시면 정말.. 그런 분들을 위해서 위에 링크를 준비해 두었습니다. 관련포스팅 아래 2.1-2 배너를 들어가보시면 왜 선형독립성을 판단할 수 있어야 하는지 알 수 있습니다. 간단히 말하자면 2계 이상의 미분방정식은 선형독립인 해들의 선형결합으로 일반해가 표현되기 때문입니다. ​ Wronskian은 이 개념을 처음 도입한 수학자 Józef Maria Hoene-Wroński 가 본인의 이름을 따서 붙인 이름인데 궁극적으로는 Wronski 행렬식을 의미합니다. ​ ​ ..

[공업수학] 2.5 오일러-코시 방정식 (Euler-Cauchy Equation)

이전포스팅 [공업수학] 2.2-1 상수계수를 가지는 제차 선형 상미분 방정식 (Homogeneous Linear ODEs with Constant Coeffici 공업수학(상)(Kreyszig)(Kreyszig)(10판) 『Kreyszig 공업수학, 10판』 상권. 이 책은 반세기 동안 전 세계적으로 가장 널리, 그리고 가장 많이 채택되어 사용되고 있는 Erwin Kreyszig 교수가 저술한 Advanced Engi subprofessor.tistory.com #공업수학 제차 ODE가 거의 다 끝나갑니다. 이번 시간에 오일러-코시 방정식을 배우고 나면 사실상 2계 제차 ODE는 더 배울 것이 없습니다. Wronskian은 두 해가 basis인지 확인할 수 있는 Tool인 동시에 비제차 방정식의 해를 구..

[미분적분학] 회전체 부피 구하기 : 디스크, 원통셸 방법

#미분적분학 #미적분학 Calculus: Early Transcendentals James Stewart's CALCULUS texts are widely renowned for their mathematical precision and accuracy, clarity of exposition, and outstanding examples and problem sets. Millions of students worldwide have explored calculus through Stewart's trademark style, while instructors have turned to his approach time and time again. In the Eighth Edition of CALCULUS..

반응형