반응형

전체 글 216

[공업수학] 1.5-1 선형 상미분방정식(Linear ODEs)

조금은 충격적이었던 완전미분방정식이었습니다. 그에 비하면 오늘 배우는 선형 상미분방정식은 조금 낫습니다. 1.1 미분방정식 분류에서 선형/비선형에 따른 분류를 다들 기억하고 있지요? 가물가물하다면 위 파란 글씨 클릭하셔서 복습하시고 본 챕터 시작하시길 추천합니다. 앞서 배운 선형이라는 개념을 토대로 1.5 선형 상미분방정식을 배워봅시다. ​ (i) Linear ODEs 1계 상미분 방정식이 다음과 같은 형태일 때, 선형성을 갖습니다. 또는 ​ 둘 다 같은 의미의 식이지만, 이번 시간에서는 둘 중 (a)-1형태의 상미분방정식을 주로 다룹니다. r(x)를 우변에 홀로 두고 계산하는 것이 편하기 때문입니다. (ii) Homogeneous Linear ODE (제차 선형 방정식) ​ 위 식에서 r(x)=0일때,..

[공업수학] 1.4-3 적분인자(Integrating Factor)

이번 챕터는 완전미분방정식이 아닌 애들을 완전미분방정식으로 만들어주는 적분인자에 대해서 알아봅시다. Basic Concept는 그러한 함수 F가 있다고 가정하고 완전성 검사를 통해서 F를 구하는 느낌입니다. 그 뒤는 완전미분방정식의 해를 구하는 방법과 동일합니다. ​ (i) Basic Concept Basic Concept는 이렇습니다. 완전미분방정식이 아닌 것에 완전성을 부여한다. 미지의 함수 F로 말입니다. 위와 같은 미분방정식을 예로 들어봅시다. 완전성 검사를 시행했을 때, nonexactness임을 알 수 있는데요, 이 식의 양변에 1/x^2 즉 를 곱해줍시다. 그러면 다음과 같은 식이 되는데요 이 식은 완전성을 가짐을 직접 해봄으로써 알 수 있습니다.(꼭 해보세요!) ​ ​ 느낌오시나요? non..

[공업수학] 1.4-2 완전미분방정식 예제

지난 시간에는 완전미분방정식이 무엇인지, 어떻게 판별하는지, 어떻게 푸는지에 대해서 알아보았습니다. 풀이과정이 다소 길고 복잡하기 때문에 예제 파트를 따로 나누었습니다. 이번 포스팅에서는 네 개의 미분방정식 예제를 소개하는데, 이를 통해 완전미분방정식에 대한 감이 잡히길 바랍니다 ​ ​ (예제 1) 다음 미분방정식의 완전성을 검사하여라 ​ dx앞에 있는 놈들을 y에 대해 편미분해주고, dy앞에 있는 놈들을 x에 대해 편미분해줍니다. ​ 음! 뭔가 둘이 안맞네 하죠? 맞아요 완전미분방정식이 아닙니다. 이런 간단한 문제가 시험에 나올 일은 없지만 만약 나온다면 저는 이렇게 답안을 작성할 것 같네요 ​ ​ 해당 미분방정식에 대해 완전성 검사를 시행한 결과 이므로 완전미분방정식이 아닙니다. ​ ​ ​ ​ (예제..

[공업수학] 1.4-1 완전미분방정식(Exact ODEs)

슬슬 뜨악할 수준이 슬금슬금 보인다. 오늘 배울 완전미분방정식의 기반을 이루는 개념은 편미분과 관련이 있다. 편미분 관련 지식은 다음 블로그에서 참조하면 된다. 본 블로그와는 다르게 매우 친절히 소개하고있다. https://blog.naver.com/mrhyde/60061507248 전미분, 편미분 편미분과 전미분 ∂ 는 편(偏)미분 기호입니다...여러 변수 중에서 1개의 변수에 대해서만 미... blog.naver.com 솔직히 가독성은 조금 떨어지는데(..) 이번 1.4-1을 위해 알고있어야 하는 개념을 모두 담고있는 좋은 글이니 알고있던 사람도 한번 들어가볼것. 1. Basic Concept x, y에 관한 다변수함수 z를 위와 같이 정의할 때, 미분소 dz는 아래와 같이 정의된다. 이것이 알아야 ..

[공업수학] 편미분 방정식 (1) : 변수분리부터 푸리에 변환까지

#공업수학 ​ ​ ​ 푸리에 코사인, 사인 급수에 대한 내용은 아래 게시글 참조 https://blog.naver.com/subprofessor/222311262488 [공업수학] 푸리에 사인 급수, 푸리에 코사인 급수 #공업수학 #푸리에급수 오늘은 푸리에 급수 중 주어진 주기함수가 기함수 또는 우함수인 경우 분류되는 푸... blog.naver.com ​ 푸리에 변환에 대한 내용은 아래 게시글 참조 https://blog.naver.com/subprofessor/222962220759 [공업수학] 푸리에 변환(Fourier Transform) #공업수학 푸리에 변환과 푸리에 역변환은 다음과 같습니다. 1. 푸리에 변환 푸리에 변환은 다음과 같이 정... blog.naver.com ​ 1. Separab..

[공업수학] 푸리에 변환(Fourier Transform)

#공업수학 ​ 푸리에 변환과 푸리에 역변환은 다음과 같습니다. ​ ​ 1. 푸리에 변환 ​ 푸리에 변환은 다음과 같이 정의됩니다. ​ ​ ​ 푸리에 변환의 경우 적분구간이 (-∞,∞) 이고 코사인, 사인 변환의 경우 (0,∞)라는 것에 주의합니다. ​ 푸리에 역변환에 있는 1/2π 항을 루트로 나눠서 푸리에 변환과 역변환에 각각 나누어 정의하기도 합니다(크레이지 공업수학) ​ ​ 2. 도함수 공식 편미분 방정식을 푸는 데 라플라스 변환을 사용하는 것처럼 푸리에 변환을 사용할 수도 있습니다. ​ *참고* https://blog.naver.com/subprofessor/222234339432 [공업수학] *편미분 방정식 예제 : 라플라스 변환* #공업수학 #라플라스변환 #편미분방정식 지난 시간에 이어 편미분..

[공업수학] 1.3 Separable ODEs (변수분리형 상미분 방정식)

간단한 변수분리형 1계 상미분 방정식을 풀어보자. 1.2는 방향장(direction field)에 관한 내용인데 깊게 들어가지 않고는 딱히 알 필요성이 적기 때문에 건너뛴다. 방향장이 뭔지 알고 싶은 사람은 아래 링크로 ​ https://blog.naver.com/NBlogTop.naver?blogId=roty22&Redirect=Dlog&Qs=/dydrogud22/220108163230 수학-방향장과 오일러 방법 지금까지 간단한 일계 미분방정식의 해를 구해 보았다. 해가 알려진 특별한 미분방... blog.naver.com ​ 1. 변수분리형 상미분 방정식의 형태 이번 시간에 다루는 변수분리형 미분방정식은 1계 미분방정식이다. 영어로는 separable ODE 혹은 separation of variab..

반응형